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Abstract—Model-based reconstruction is a powerful frame-
work for solving a variety of inverse problems in imaging. In
recent years, enormous progress has been made in the problem
of denoising, a special case of an inverse problem where the
forward model is an identity operator. Similarly, great progress
has been made in improving model-based inversion when the
forward model corresponds to complex physical measurements
in applications such as X-ray CT, electron-microscopy, MRI, and
ultrasound, to name just a few. However, combining state-of-the-
art denoising algorithms (i.e., prior models) with state-of-the-art
inversion methods (i.e., forward models) has been a challenge for
many reasons.
In this paper, we propose a flexible framework that allows

state-of-the-art forward models of imaging systems to be matched
with state-of-the-art priors or denoising models. This framework,
which we term as Plug-and-Play priors, has the advantage that
it dramatically simplifies software integration, and moreover, it
allows state-of-the-art denoising methods that have no known for-
mulation as an optimization problem to be used. We demonstrate
with some simple examples how Plug-and-Play priors can be used
to mix and match a wide variety of existing denoising models
with a tomographic forward model, thus greatly expanding the
range of possible problem solutions.

I. INTRODUCTION

Model-based reconstruction is a powerful framework for
solving a variety of inverse problems in imaging including
denoising, deblurring, tomographic reconstruction, and MRI
reconstruction. The method typically involves formulating a
model for the noisy measurement system (i.e., a forward
model) and a model for the image to be reconstructed (i.e.,
a prior model). The reconstruction is then computed by
minimizing a cost function that balances a fit to these two
models.
In recent years, there have been enormous advances in the

solution of a particular inverse problem generally referred to as
image denoising [1], [2]. Since image denoising is the simplest
case of an inverse problem, the forward model being the
identity operator, research in this field tends to provide a fertile
environment for the creation of new prior models. In fact, a
number of very novel and effective approaches have recently
emerged for image denoising [1]–[7]. These new methods have
demonstrated that it is possible to vastly improve on what was
previously believed to be possible.
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In parallel with these efforts, researchers have been pi-
oneering ways to create forward models for a wide array
of imaging and sensing systems from medical scanners [8]
to microscopes [9]. Research in this field has demonstrated
that model-based inverse methods can greatly improve the
quality of reconstructed images [10]. However, since this
research primarily deals with the challenges of accurately
modeling large and complex forward models and solving the
associated optimization problems, there has been much less
emphasis on the incorporation of state-of-the-art prior models.
Therefore, research in model-based inversion has tended to lag
behind from the perspective of advanced prior modeling; and
moreover, has not fully benefited from the recent progress in
denoising methods.
In fact, recent progress has been made in incorporating

advanced priors into general inverse problems. For example,
patch based dictionary priors have been used in inverse prob-
lems such as tomography [11] and MRI [12]. Furthermore,
while the BM3D [5] denoising may not naturally lend itself
to formulation as a prior, Danielyan et al. [13] have adapted the
BM3D for the inverse problem of image deblurring. However,
this approach is not directly applicable to a general inverse
problem. Furthermore, the approach in [13] is not directly
applicable to denoising algorithms/priors formulated using a
nonparametric point estimation framework such as [1] and [7].
So, while some advances have been made in the integration
of advanced prior and forward models, they tend to be highly
customized to the problem and currently no simple turn-key
approach exists to match denoising algorithms as priors for
general inverse problems.
In this paper, we propose a flexible framework for using

denoising algorithms as priors for model-based inversion. This
framework, which we term Plug-and-Play priors, has the ad-
vantage that it simplifies software integration, and moreover, it
allows state-of-the-art denoising methods that are not explicitly
formulated as optimization problems to be used. Our proposed
Plug-and-Play framework is based on a direct application of
the alternating directions method of multipliers (ADMM) [14]
that has recently become popular for the solution of a variety
of MAP estimation/regularized inverse problems [15]–[18].
Our application of ADMM works by first splitting the state
variable so as to decouple the prior and forward model terms
of MAP estimation problem. The application of the ADMM
technique to the resulting constrained minimization problem
then results in two decoupled optimizations, one for the
forward model and one for the prior model. We note that this
allows for a completely decoupled software implementation



with one module corresponding to a denoising algorithm only
dependent on the prior, and a second module corresponding to
a model-based inversion with l2 regularization only dependent
on the forward model. Importantly, we demonstrate empiri-
cally that this framework can be used to solve a reconstruction
problem even when the explicit function corresponding to the
prior model is not known.

II. MAP COST FUNCTION FOR SOLVING INVERSE
PROBLEMS

Let y be a M × 1 measurement vector from which we
desire to estimate the unknown x, a N × 1 vector. Let p(y|x)
be the conditional probability density function (pdf) of the
measurements y given x, and p(x) be the pdf of the unknown,
then the MAP estimate of x is given by

x̂ ← argmin
x

{− log p(y|x)− log p(x)}

x̂ ← argmin
x

{l(y;x) + s(x)} (1)

where l(y;x) = − log p(y|x) and − log p(x) = s(x) +
terms independent of x. In the special case of l(y;x) =
1

2σ2
n

‖y−x‖22+
M
2
log

(

2πσ2
n

)

the MAP estimate corresponds to
denoising designed to remove additive white Gaussian noise of
variance σ2

n. For this special case, we defineH(y;σ2
n) to be the

operator that denoises the signal y when it has been corrupted
by additive Gaussian noise of variance σ2

n. This operator is
then given by the solution to the following MAP optimization
problem:

H(y;σ2
n) = argmin

x

{

1

2σ2
n

‖y − x‖22 + s(x)

}

. (2)

Sometimes it is useful to have an additional regularization
parameter to control the relative effect of the prior model on
the reconstruction. To allow for this additional control, we can
rewrite the estimation problem as

x̂ ← argmin
x

{l(y;x) + βs(x)} , (3)

where β can be used to modulate the amount of regularization
applied to the inversion. Notice that when β = 1 the problem
is exactly the MAP estimation problem (1).

III. VARIABLE SPLITTING AND ADMM
In order to design an algorithm for (3) that decouples the

forward and prior terms, we first split the variable x into two
new variables x and v, and reformulate equation (3) as the
following constrained optimization problem [15].

(x̂, v̂) ← argmin
x,v

{l(y;x) + βs(v)}

subject to x = v . (4)

We then solve (4) by forming the augmented Lagrangian
function and using the ADMM technique [14]. The augmented
Lagrangian for this problem is given by

Lλ(x, v, u) = l(y;x) + βs(v) +
λ

2
‖x− v + u‖22

−
λ

2
‖u‖22. (5)

where u is a scaled dual variable and λ is the penalty param-
eter. The ADMM algorithm consists of repeatedly performing
the following steps until convergence.

x̂ ← argmin
x

Lλ(x, v̂, u)

v̂ ← argmin
v

Lλ(x̂, v, u)

u ← u+ (x̂− v̂) .

Notice that in general λ does not effect the final result but
controls the rate of convergence of the ADMM algorithm.
If x̃ = v̂ − u and ṽ = x̂ + u then each iteration of the

algorithm can be written as

x̂ ← argmin
x

{

l(y;x) +
λ

2
‖x− x̃‖22

}

(6)

v̂ ← argmin
v

{

λ

2
‖ṽ − v‖22 + βs(v)

}

(7)

u ← u+ (x̂− v̂). (8)

The first step only depends on the choice of forward model.
The second step only depends on the choice of prior and can
be interpreted as a denoising operation as in equation (2).
In order to emphasize the modular structure of the ADMM

update, we define the operator F(y, x̃;λ) as

F(y, x̃;λ) = argmin
x

{

l(y;x) +
λ

2
‖x− x̃‖22

}

. (9)

This function returns the MAP estimate of x given the data y,
using very simple quadratic regularization to a value, x̃. We
call F a simplified reconstruction operator. Notice that F is
also the proximal mapping [19] associated with the function
1

λ
l(y;x). Using our definition of the simplified reconstruction
operator F(y, x̃;λ) from (9), and our definition of the denois-
ing operator H(y;σ2

n) from (2), we may now reformulate the
ADMM iterations as the following three steps.

x̂ ← F(y, x̃;λ) (10)

v̂ ← H(ṽ;
β

λ
) (11)

u ← u+ (x̂− v̂). (12)

Importantly, using this Plug-and-Play framework, the mini-
mization can now be written as two independent software
modules - one for implementing the simplified reconstruction
operator F(y, x̃;λ) and the other for implementing the denois-
ing algorithm H(ṽ;σ2

n). Furthermore changing the prior model
only involves changing the implementation of H(ṽ;σ2

n). Thus
the Plug-and-Play priors framework can be used to mix and
match different denoising algorithms (priors) with the forward
model of interest. Notice that the minimization corresponding
to the simplified reconstruction operator and the denoising
operator need not be exact. Instead, they can be replaced
by the approximate operators F̃ and H̃ that do not minimize
the respective cost functions but instead decrease its value
sufficiently. This is an important technique for speeding up the
implementation of the ADMM [14] and making the algorithm
useful in practical applications.
We note that the variable splitting approach discussed here

has been exploited to solve a variety of inverse problems [15],



[18], [20]. However the main motivation of this research was to
create better algorithms for solving the optimization problems
resulting from regularized inversion. For example, this variable
splitting/ADMM approach has been used to more effectively
solve problems with l1 norms, TV norms, and positivity
constraints that can create difficulties in conventional gradient
based optimization. In distinction to this earlier research, our
primary goal is to use splitting strategies as a mechanism
to create a flexible framework to easily match prior models
(embodied in the form of denoising algorithms) with forward
models.
Finally we note that in this paper we do not discuss theoret-

ical convergence properties of the Plug-and-Play framework.
While the ADMM is guaranteed to converge if l and s are
convex, closed and proper functions and L0 has a saddle
point [14], we observe via our numerical experiments that
substituting H with denoising algorithms that do not explicitly
correspond to a convex function s or even a strict optimization
problem, still produces a stable result. Thus we rely on
empirical evidence from our experiments to show that our
framework produces a stable result.

IV. EXPERIMENTAL RESULTS
In this paper we will restrict our simulations to the case

where l(y;x) = 1

2
‖y − Ax‖2Λ , A is a tomographic forward

projector, and Λ is a diagonal weighting matrix. We will ex-
periment with a variety of state-of-the-art denoising techniques
for H which may or may not explicitly be formulated as
prior models in a regularized optimization framework. We
evaluate our method on a 64 × 64 Shepp-Logan phantom
with values scaled between 0− 255. The phantom is forward
projected at 141 views between −70◦ and +70◦ and noise is
added to simulate Poisson statistics (variance is set equal to
the mean). We compare reconstructions using the Plug-and-
Play priors framework by experimenting with six different
denoising techniques/priors - K-SVD [4], BM3D [5], PLOW
[7], Total Variation (TV) [21], q-GGMRF [22] and discrete
reconstruction (DR) [23]. The regularization parameter β is
adjusted for achieving the minimum root mean square error
(RMSE) between the reconstruction and phantom. The patch
sizes for K-SVD and BM3D are set to 4×4 and for PLOW to
5×5. Instead of using the simplified reconstruction operator F
in the ADMM loop, we use an approximate operator F̃, which
lowers the value of the cost function corresponding to F using
NIter number of iterations of iterative coordinate descent
(ICD) [24] with random order updates [8]. The algorithm is
initialized with a filtered back projection reconstruction. The
value of NIter is set to 1 for all algorithms except the DR
prior in which case it is set to 20 for the first outer iteration.
The value of λ is set to 1/20 for all experiments. Since the DR
prior is non-convex we observed that the value of λ effects the
final solution. The number of levels in the case of the discrete
reconstruction prior is set to 6 - the number present in the
original phantom.
Fig. 1 shows the reconstructions resulting from the use of

the six denoising algorithms as prior models, and Table I
shows the corresponding RMSE for each prior. For this very
simple Shepp-Logan image, the DR prior results in the lowest

(a) Phantom

(b) K-SVD (c) BM3D

(d) PLOW (e) TV

(f) q-GGMRF (g) Discrete reconstruction

Fig. 1. Comparison of the minimum RMSE reconstructions using different
priors for the Shepp-Logan phantom projected in a limited angular range
(+/ − 70◦). All images are displayed in the window [0 − 255]. (a)
Phantom (b) K-SVD (c) BM3D (d) PLOW (e) TV (f) q-GGMRF (g) Discrete
reconstruction. We observe that the patch based denoising algorithms (b) - (d)
work well producing qualitatively comparable reconstructions to the typically
used priors like TV and q-GGMRF. Some of the features in the phantom are
not reconstructed accurately due to the limited angle nature of the projection
data. The discrete prior (g) produces a very accurate reconstruction for this
phantom.
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Fig. 2. Comparison of the convergence (RMSE between the reconstruction
and the original phantom) as a function of iteration number for the different
denoising models used. We note that the convergence for all algorithms is
robust and stable. Furthermore the convergence rates across the different
denoising algorithms are similar.

TABLE I
COMPARISON OF THE MINIMUM ROOT MEAN SQUARE ERROR OF THE
RECONSTRUCTION WITH RESPECT TO THE ORIGINAL PHANTOM FOR

VARIOUS PRIORS. WE OBSERVE THAT THE THE PATCH BASED NONLOCAL
DENOISING OPERATORS GIVE A LOW RMSE RECONSTRUCTION.

Algorithm RMSE β
K-SVD [4] 2.13 4.32
BM3D [5] 2.46 1.39
PLOW [7] 2.35 1.50
TV [21] 3.55 0.47

q-GGMRF [22] 4.58 0.28
Discrete Recon [23] 1.20 1.00

RMSE. However, the other methods result in a comparable
RMSE. Most importantly, each denoising algorithm was easily
matched to the tomographic forward model and for each prior,
the convergence to the fixed solution was stable and robust (see
Fig. 2). Interestingly, BM3D [5] and PLOW [7] are formulated
without the explicit use of an optimization framework, so
the Plug-and-Play methodology provides a simple and robust
framework to incorporate them as priors for model based
reconstruction.

V. CONCLUSIONS
In this paper, we proposed a flexible framework that allows

state-of-the-art forward models of imaging systems to be
matched with state-of-the-art prior or denoising models. The
framework, which is based on variable splitting and use of
the ADMM algorithm, simplifies the software architecture by
decoupling the forward and prior models. Furthermore the
framework enables state-of-the-art denoising algorithms, even
those that have no known formulation as an optimization
problem, to be used as priors/regularizers for model based
inversion.
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